Synthetic Monitoring

Simulate visitor interaction with your site to monitor the end user experience.

View Product Info

FEATURES

Simulate visitor interaction

Identify bottlenecks and speed up your website.

Learn More

Real User Monitoring

Enhance your site performance with data from actual site visitors

View Product Info

FEATURES

Real user insights in real time

Know how your site or web app is performing with real user insights

Learn More

Infrastructure Monitoring Powered by SolarWinds AppOptics

Instant visibility into servers, virtual hosts, and containerized environments

View Infrastructure Monitoring Info
Comprehensive set of turnkey infrastructure integrations

Including dozens of AWS and Azure services, container orchestrations like Docker and Kubernetes, and more 

Learn More

Application Performance Monitoring Powered by SolarWinds AppOptics

Comprehensive, full-stack visibility, and troubleshooting

View Application Performance Monitoring Info
Complete visibility into application issues

Pinpoint the root cause down to a poor-performing line of code

Learn More

Log Management and Analytics Powered by SolarWinds Loggly

Integrated, cost-effective, hosted, and scalable full-stack, multi-source log management

 View Log Management and Analytics Info
Collect, search, and analyze log data

Quickly jump into the relevant logs to accelerate troubleshooting

Learn More

Light-speed computer technology

Fluent in the language of light

When you access the Internet from your computer, light particles (photons) that contain data bounce along a fiber-optic cable, ready to relay that cute cat video to your screen. When the photons reach your computer, they need to be converted to electrons so that your computer can understand the data. This is just like when two lanes merge to one on the freeway and cause traffic jams. Bottlenecking can occur as quick photons wait to transfer their data to relatively sluggish electrons.

Now, a team of scientists at The University of Utah has created a microscopic silicon photonic chip that takes an incoming beam of light and spits out two beams of light. Previously such separation would have required time and power-consuming electronics or if photonics devices were used they would have been much larger and so much harder to integrate onto a chip.

Photo credit: Ultracompact beamsplitter by Dan Hixson: University of Utah College of Engineering
The overhead view of a new beamsplitter for silicon photonics chips that is the size of one-fiftieth the width of a human hair. Photo credit: Dan Hixson/University of Utah College of Engineering

These new microchips do away with converting photons to electrons by working exclusively with light particles and since photons are the fastest-moving particles in the known universe, this has the potential to make computers incredibly fast.

World’s smallest. And environmentally beneficial.

The ultracompact beamsplitter is 2.4 by 2.4 microns (millionth of a meter). For reference, a bacterium is around 2 microns. Since the chips shuttle photons along instead of electrons, devices would create less heat and need less power to run and have a longer battery life. Also, the size of the chip means that fewer raw materials are needed to make it and the techniques to print the chip use mature, preexisting processes in silicon electronics.

“This means that we can exploit the vast existing manufacturing infrastructure to enable integrated photonics,” says Rajesh Menon, Associate Professor at The University of Utah. “Data centers today consume over 2% of the total global electricity. Reducing power consumption in data centers and other electronics can go a long way to reduce our CO2 emissions and stem global climate change.”

Rajesh Menon. Phot credit: Dan Hixson/University of Utah College of Engineering
Rajesh Menon. Photo credit: Dan Hixson/University of Utah College of Engineering

The team at Utah has ambitions to create a library of ultra-compact devices that can then be all connected together in a variety of different ways to enable both optical computing and communications.

“I believe that these devices will usher in unpredictable, but unbelievably exciting applications”, says Rajesh Menon.

Under development

The first supercomputers using  – already under development at companies such as Intel and IBM – will use hybrid processors that remain partly electronic. Rajesh Menon believes his beamsplitter could be used in those computers in about three years. Data centers that require faster connections between computers also could implement the technology soon.

Multiple exaFLOPs optical computer on your desk. By 2020?

Optalysys, a UK technology company, says it is on-target to demonstrate a novel optical computer, which performs calculations at the speed of light. If all goes to plan, Optalysys will put an exascale supercomputer on your desk by 2020.

Advancements in liquid crystal technology now permit numerical data to be dynamically entered into an optical system at high speeds and resolutions. In April, the company announced that they have successfully developed a demonstrable prototype that can process mathematical functions optically in a patented, scalable, lensless design. Optical processing systems will “turbo-charge” existing computers by performing processor-intensive tasks at much faster rates and with a significant reduction in energy consumption. The portable prototype, with a footprint similar to a desktop computer, achieves a processing speed equivalent to 320 gigaFLOPs.

“Optalysys’s initial products will launch in 2017 and are expected to enable existing computers to achieve HPC-levels of performance up to an equivalent processing rate of 9 petaFLOPs – comparable to the 5th fastest computer in the world today. Following that we plan to pursue the design of larger systems capable of achieving multiple exaFLOPs by 2020”, says Optalysys Chairman, James Duez.

https://www.youtube.com/watch?v=T2yQ9xFshuc&list=PLQK8lSHQrWKqKCX3Gmg9vNVuSn93WNYPS

Webpages Are Getting Larger Every Year, and Here’s Why it Matters

Last updated: February 29, 2024 Average size of a webpage matters because it [...]

A Beginner’s Guide to Using CDNs

Last updated: February 28, 2024 Websites have become larger and more complex [...]

The Five Most Common HTTP Errors According to Google

Last updated: February 28, 2024 Sometimes when you try to visit a web page, [...]

Page Load Time vs. Response Time – What Is the Difference?

Last updated: February 28, 2024 Page load time and response time are key met [...]

Can gzip Compression Really Improve Web Performance?

Last updated: February 26, 2024 The size of the web is slowly growing. Over [...]

Monitor your website’s uptime and performance

With Pingdom's website monitoring you are always the first to know when your site is in trouble, and as a result you are making the Internet faster and more reliable. Nice, huh?

START YOUR FREE 30-DAY TRIAL

MONITOR YOUR WEB APPLICATION PERFORMANCE

Gain availability and performance insights with Pingdom – a comprehensive web application performance and digital experience monitoring tool.

START YOUR FREE 30-DAY TRIAL
Start monitoring for free